Projet Educatif « Le Climat c'est chez moi! »

Formation du 13 janvier 2016

CATALOGUE METEO-FRANCE DES DONNEES CLIMATIQUES

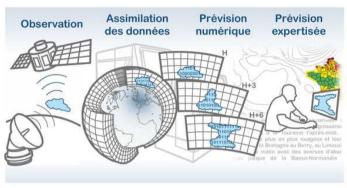
Julien DESPLAT

Etudes & Climatologie Direction Ile-de-France/Centre Météo-France

13 janvier 2016

Plan de l'intervention

Les données du climat passé
Applications Web pour les climats passé et futur
Modalités administratives pour l'accès aux données



Météo ou climat?

La météorologie :

Le temps qu'il fait et le temps prévu, à un instant et un lieu donnés

Fournit des valeurs observées pour divers paramètres et des valeurs prévues à plusieurs jours d'échéance

© Météo-France

La climatologie:

Conditions météorologiques moyennes caractérisant une région donnée

Valeurs moyennes établies sur 30 ans de ces paramètres météorologiques sur des zones géographiques plus étendues

Analyse de statistiques « météos » sur des périodes d'au moins 30 ans

Le changement climatique : Comment connaître le climat passé ?

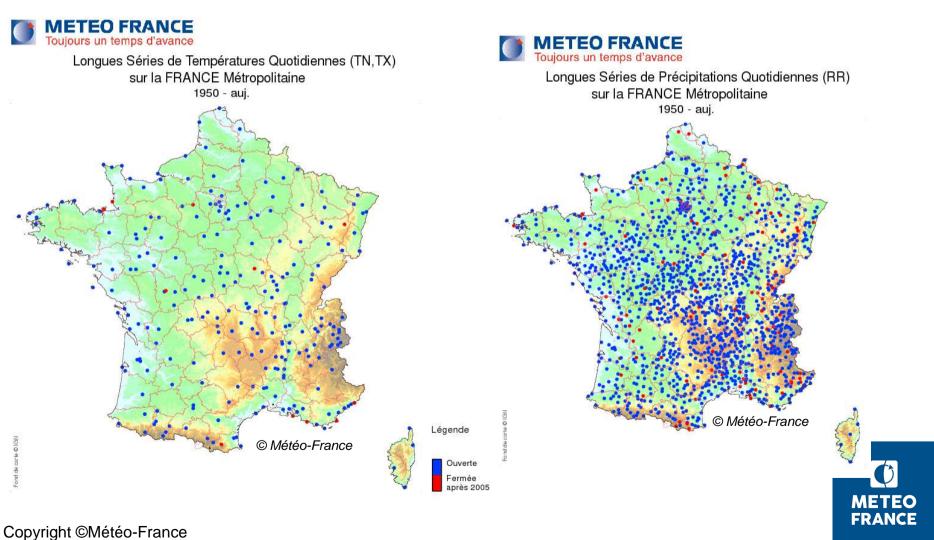
Les données météorologiques sont mesurées à l'aide d'instruments depuis 150 ans seulement...

Source: Météo-France

Comment connaître le climat passé ? L'observation météorologique au sol

Réseau synoptique d'observation au sol

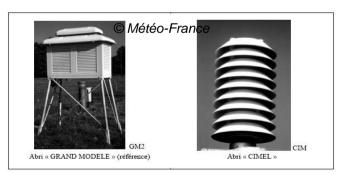
L'étude du climat passé : Sauvegarder les données du climat passé


→ Mieux comprendre le fonctionnement du système climatique, clé pour anticiper ses évolutions futures. Pour cela, les climatologues doivent disposer de séries d'observations sur la période la plus longue possible.

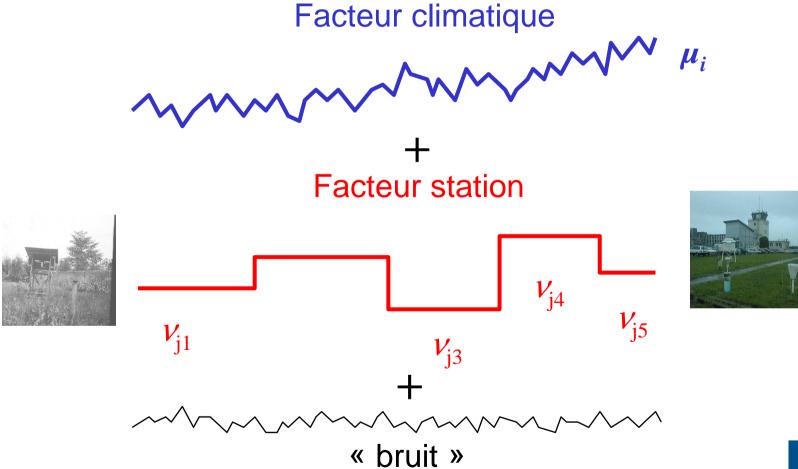
« L'évolution du climat ne peut être analysée que par de longues séries de données, à grande échelle, homogènes et continues » (*Académie des sciences, 2010*)

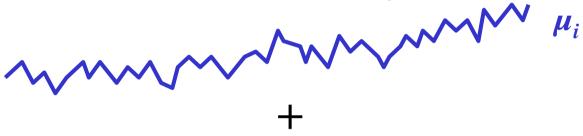
- Une base nationale de données climatiques
 - Mission de conservation de la mémoire du climat : collecte, contrôle et archivage des données climatiques dans une base nationale.
- Des longues séries de référence pour caractériser le climat et son évolution :
 - replacer les événements climatiques extrêmes dans un contexte à long terme
 - contribuer à l'avancement des études de détection et d'attribution des changements climatiques
 - fournir de meilleures données pour évaluer et calibrer les modèles numériques globaux et régionaux du climat

L'étude du climat passé : Les Longues Séries de Données

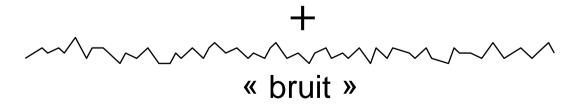

~240 LSD de température (T) et ~1300 LSD de précipitations (RR) de plus de 50 ans

- Evénements susceptibles d'introduire des ruptures d'homogénéité dans les séries :
 - Changement d'emplacement du site de mesure ;
 - Changement de capteur, d'abri météorologique ;
 - Modification de l'environnement du capteur (végétation, urbanisation...);
 - Changement du mode de calcul du paramètre ;
 - Observateurs différents ;
 - Valeurs reconstituées sur de longues périodes (conflits).




Série chronologique observée :

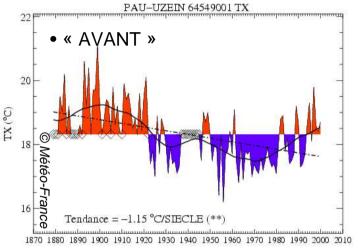
Série chronologique homogénéisée :

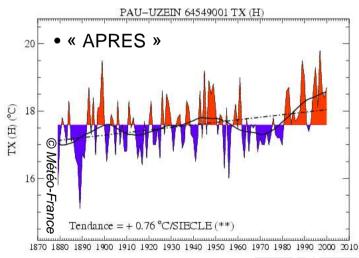

Facteur climatique

Facteur station

 V_{j5}

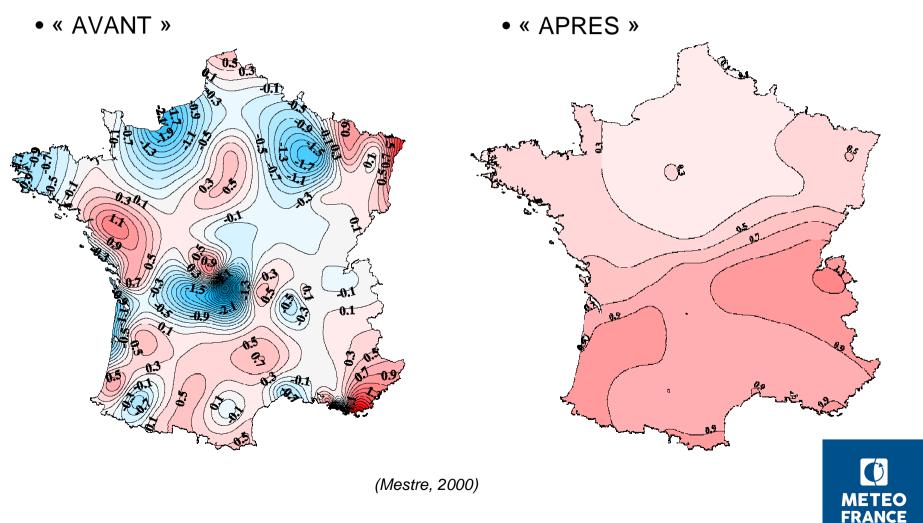
Exemple : Correction des températures maximales de Pau




© Météo-France

Hier
Ecole Normale
Pau-Lescar, 1912

Aujourd'hui


Aéroport de Pau-Uzein

Exemple: Températures Maximales, tendances 1901-2000

Les données du climat passé : Données homogénéisées

- Séries homogénéisées sur l'IdF fournies :
 - Au pas de temps mensuel
 - Nombreuses séries de plus de 50 ans, voire plus de 100 ans, de ;
 - Températures minimales et maximales quotidiennes moyennées sur un mois (Tn et Tx)
 - Cumul mensuel de précipitations, en mm, ie L/m² (RR)
 - Servent à quantifier l'évolution des paramètres moyens
 - Aident donc à caractériser l'évolution du climat moyen

POSTES	PERIODE(S) SH Tn et Tx	PERIODE(S) SH RR
Paris-Montsouris	1876-2000 et 1954-2009	1882-2000 et 1947-2013
Melun	1954-2009	1947-2013
Orly	1954-2009	1950-2013
Saint-Maur	1954-2009	1947-2013
Le Bourget	1954-2009	1951-2013
Villacoublay	1954-2009	
Pontoise	1954-2009	1947-2013
Brétigny	1954-2009	1948-2013

- Séries Quotidiennes de Référence sur l'IdF fournies :
 - Au pas de temps quotidien ;
 - Détection des ruptures mais pas de correction apportée (non homogénéisées)
 - Rarement centenaire, commencent à être nombreuses dès 1955
 - Paramètres Tn, Tx et RR
 - Servent à quantifier l'évolution des indices climatiques
 - Aident donc à caractériser l'évolution des extrêmes climatiques

POSTES	PERIODE(S) SQR Tn et Tx	PERIODE(S) SQR RR
Paris-Montsouris	1959-2015	1959-2015
Melun	1954-2015	1959-2015
Orly	1954-2015	1959-2015
Trappes		1959-2015
Le Bourget		1959-2015
Villacoublay	1959-2015	
Pontoise		1960-2015

Les données du climat passé : Règles climatiques de base

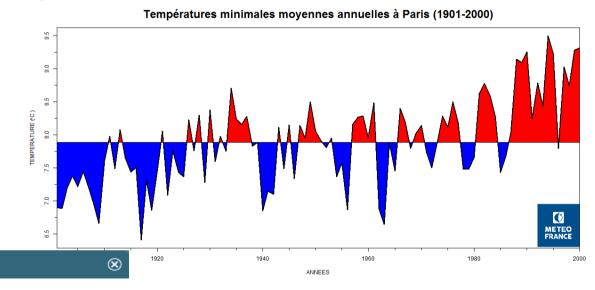
Comment exploiter les SH et SQR ?:

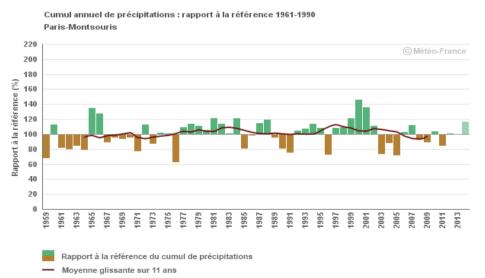
- Privilégier les calculs (moyenne, tendance,...) sur des périodes de 30 ans,
 voire de 10 ans, mais pas au-dessous (excepté aux pas de temps saisonnier et annuel);
- Privilégier l'analyse et l'interprétation sur de longues périodes, supérieure à 30 ans ;
- Les normales climatiques en vigueur sont les moyennes de paramètres calculées sur la période 1981-2010;
- La définition des saisons est définie de la manière suivante :
 - Printemps : Mars à Mai ;
 - Eté: Juin à Août;
 - Automne : Septembre à Novembre ;
 - Hiver : Décembre à Février.

Les données du climat passé : Données homogénéisées

Exemples de calculs à partir des SH :

- Calculs de tendance sur l'intégralité de la période : régression linéaire (y=ax +b), en déterminant le coefficient a ;
- Calcul de moyenne sur toute la période ou les normales climatiques (moyenne 1981-2010), et calcul des écarts annuels, saisonniers ou mensuels à ces moyennes;
- Calcul de moyennes glissantes (moyennes au moins sur 10 ans par ex).




Les données du climat passé : Données homogénéisées

Evolution au cours du XXème siècle, ou sur les 60 dernières années :

Températures minimales : + 1,6°C entre 1901 et 2000

Températures maximales en forte augmentation depuis 1954

Paris-Montsouris

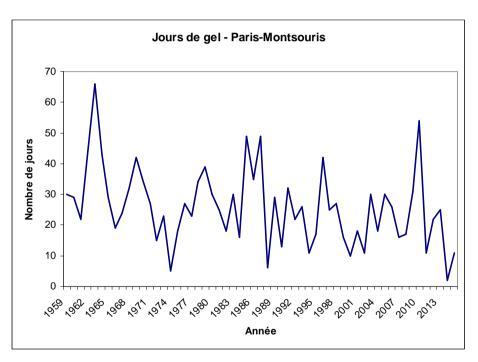
Evolution des pluies en région parisienne :

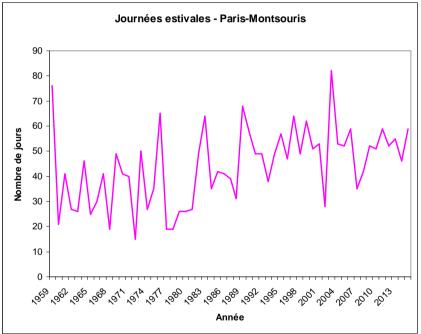
- Forte variabilité inter-annuelle des pluies
- Pas d'évolution marquée des pluies

Exemples de calculs à partir des SQR :

Calculs d'indicateurs climatiques (tendances, moyennes,...)

TEMPERATURE	PRECIPITATIONS
Tn quotidienne	Cumul pluviométrique annuel (en mm par an)
Tx quotidienne	Cumul pluviométrique hivernal (oct. à mars) (en mm par an)
T moyenne quotidienne ((Tn + Tx)/2)	Cumul pluviométrique estival (avr. à sept.) (en mm par an)
Amplitude thermique quotidienne (Tx-Tn)	Nb de jours de fortes pluies (RR≥10mm en 24h) (en jours/an)
Nombre de nuits tropicales $(T_n \ge 20 {}^{\circ}\!$	Nb de jours de précipitations intenses (RR≥50mm en 24h) (en nombre de fois/30 ans par exemple)
Nombre de jours chauds ($T_x \ge 25^{\circ}C$) (en jours/an)	Cumul maximal de précipitations en 24h pour le jour le plus pluvieux des 30 ans (en mm)
Nombre de jours très chauds ($T_x \ge 30$ °C) (en jours/an)	Nb de jours sans précipitations (en j/an)
Nb de jours extrêmement chauds $(T_x\!\!\geq\!\!35^{\circ}\!\!\mathbb{C})$ (en nb de fois/30 ans par exemple)	Indicateur sécheresse (nombre de jours faisant suite à une période de 15j consécutifs sans précipitations) (en j/an)
T°C maximale pour le jour le plus chaud sur les 30 $$ ans (en °C)	Nombre de jours de pluies (RR ≥1mm en 24h) (en jours/an)
T°C minimale pour le jour le plus froid sur les 30 ans (en °C)	
Nombre de jours froids $(T_n \le -5^{\circ}\mathbb{C})$ (en jours/an)	
Nombre de jours de gel $(T_n \!\!\leq\!\! 0^{\circ}\!\!\mathbb{C})$ (en jours/an)	
Date de première gelée (en jj/mm)	
Date de dernière gelée (en jj/mm)	
Nombre de jours sans dégel ($T_x \le 0$ °C) (en jours/an)	

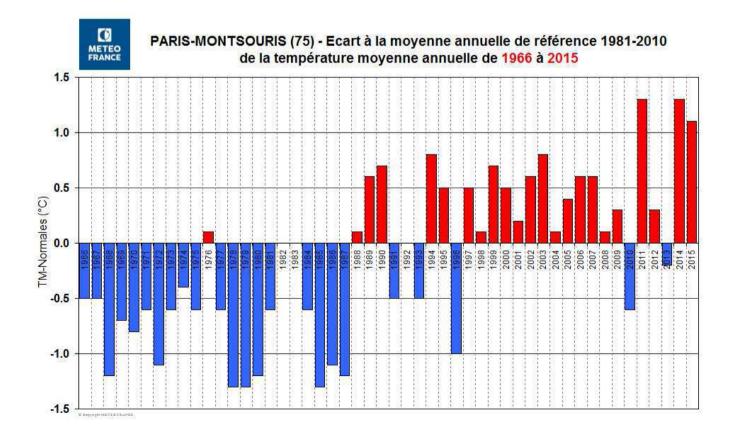

Net réchauffement en Île de France depuis 1959

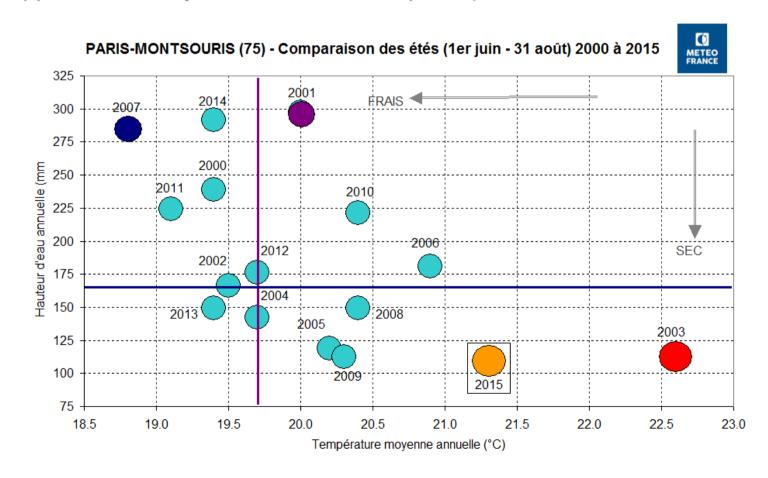

Un nb annuel de jours de gel qui diminue : sur la période 1959-2009, la diminution est de -3 à -4 jours/décennie sur la région ;

Un nb annuel de journées chaudes qui augmente : sur la période 1959-2009, l'augmentation est de +3 à +6 jours/décennie sur la région.

Exemples de calculs à partir des SQR :

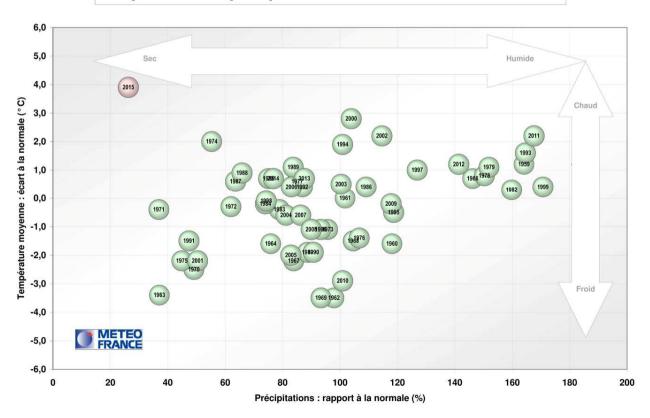
Exemple de tendances d'indicateurs




Exemples de calculs à partir des SQR :

 Analyse climatique événementielle (bilan d'une année/saison/mois et comparaison des écarts par rapport à une moyenne avec le climat passé)

Exemples de calculs à partir des SQR :


 Analyse climatique événementielle (bilan d'une année/saison/mois et comparaison des écarts par rapport à une moyenne avec le climat passé)

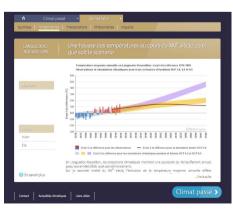
Exemples de calculs à partir des SQR :

 Analyse climatique événementielle (bilan d'une année/saison/mois et comparaison des écarts par rapport à une moyenne avec le climat passé)

Températures et précipitations en Décembre de 1959 à 2015

Plan de l'intervention

Les données du climat passé
Applications Web pour les climats passé et futur
Modalités administratives pour l'accès aux données



Exemples d'outils en ligne pour aller plus loin... ...dans le futur

Premier niveau de service : Climat^{HD}

- Offre une visualisation simple, accessible à tous et actualisée de l'état des connaissances sur le changement climatique
- 2. Une vision intégrée du climat passé et futur, à l'échelle nationale et régionale (Températures, Précipitations, phénomènes et les impacts)

Exemples d'outils en ligne pour aller plus loin... ...dans le futur

DRIAS, les futurs du Climat : Donner accès aux scénarios climatiques Régionalisés français pour l'Impact et l'Adaptation de nos Sociétés et environnements.

- 1. Fourniture d'informations climatiques pour les acteurs impliqués dans les problématiques d'impact et d'adaptation (Recherche, collectivités, industries, bureaux d'études,...);
- 2. Un soutien pour les scientifiques ;
- 3. Besoin d'un système pour faciliter le lien entre offre et demande.

Exemples d'outils en ligne pour aller plus loin... ...dans le futur

DRIAS, les futurs du Climat

Plan de l'intervention

Les données du climat passé
Applications Web pour les climats passé et futur
Modalités administratives pour l'accès aux données

Modalités administratives pour accéder aux données

Données du climat passé :

- Les données présentées dans ce catalogue sont communicables à la demande,
- et ce à titre gracieux,..., moyennant l'acceptation d'une Licence de réutilisation des données
- Devant être signée par le(s) enseignant(s) en charge du projet éducatif et le responsable de l'établissement scolaire, puis envoyé soit par voie postale, soit par mail :

Division Etudes & Climatologie

Direction Interrégionale Ile-de-France/Centre - Météo-France

73, Avenue de paris Saint-Mandé 94165 Cedex

@: etudes-clim.iledefrance-centre@meteo.fr

 Envoi par e-mail de l'intégralité des données du climat passé, présentées dans ce catalogue, toutes au format Excel.

Données issues du climat futur :

- Manipulations de Climat-HD et DRIAS, applications web gratuites.
- Accompagnement possible, à la demande, dans l'exploitation et l'interprétation des données
- Votre interlocuteur privilégié : M. Julien Desplat (julien.desplat@meteo.fr)

« Nous n'héritons pas de la Terre de nos parents, nous l'empruntons à nos enfants »

Antoine de Saint-Exupéry

Merci de votre attention

