Fiche_synthese_donnees_03051500

Informations générales de la station

Ce tableau présente les données identitaires de la station ainsi que le nombre de prélèvements en eau effectués par an sur la station (code SANDRE "support"=3) permettant des analyses physico-chimiques, et hydrobiologiques.

	Informati	Nombre de prelevements par							
Code station	Nom station	Code Insee Nom commune		Code masse d'eau	2014	2015	2016	2017	2018
03051500	LE RU D'ANCOEUIL A MOISENAY 1	77295	MOISENAY	HR91	12	12	12	12	12

La légende, et des explications sur la bonne utilisation des données sont disponibles après la présentation des tableaux de données.

Les données quantitatives

· Les paramètres biologiques

Données à venir

· Les paramètres physico-chimiques sous-tendant la biologie

Paramètre	s			Années		
Intitulé	Code sandre	2014	2015	2016	2017	2018
Bilan de l'oxygène		Bon	Bon	Bon	Bon	Mauvais
Oxygène dissous (mq O2.I-1)	1311	8.240	8.510	9.100	9.200	8.000
Taux de saturation en O2 dissous (%)	1312	81.500	80.400	(80.000	91.400	(81.000)
DBO5 (mq O2.I-1)	1313	2.100	2.900	2.600	2.000	2.700
Carbone organique dissous (mq C.I-1)	1841	5.100	4.700	5.000	5.100	7.100
Température		Tres bon				
Eaux Intermédiaires	1301	16.250	17.000	16.300	17.400	18.300
Nutriments		Médiocre	Médiocre	Médiocre	Médiocre	Médiocre
Orthophosphates PO43- (mg PO43I-1)	1433	0.860	1.400	0.551	0.889	0.746
Phosphore total (mg P.I-1)	1350	0.330	0.450	0.190	0.390	0.370

Paramètres	s			Années		
Intitulé	Code sandre	2014	2015	2016	2017	2018
Ammonium NH4+ (mg NH4+.l-1)	1335	0.130	0.170	0.097	0.210	0.230
Nitrites NO2- (mg NO2I-1)	1339	0.280	0.240	0.250	0.240	0.250
Nitrates NO3- (mg NO3I-1)	1340	35.000	34.900	43.100	39.000	37.000
Acidification		Bon	Bon	Bon	Bon	Bon
PH minimum	1302	7.830	7.770	8.100	8.200	8.000
PH maximum	1302	8.440	8.340	8.500	8.600	8.200
Salinité		Sans objet				
Conductivité	1303	1050.000	1112.000	979.000	1000.000	884.000
Chlorure	1337	88.000	86.000	82.000	69.000	72.000
Sulfates	1338	87.000	66.000	66.000	56.000	67.000

Les polluants spécifiques de l'état écologique

Synthèse globale des données

code station	2014	2015	2016	2017	2018
03051500	bon	bon	bon	bon	bon

Données détaillées

Paramètro	es		Со	ncentration	moyenne (µ	ıg/l)	
Nom	Code sandre	NQE	2014	2015	2016	2017	2018
Polluants non synt	hétiques (a)						
Arsenic	1369	0.83	1.592	1.383	0.962	1.065	0.923
Chrome	1389	3.40	0.26	0.25	0.163	0.115	0.11
Cuivre	1392	1.00	1.26	1.124	1.33	1.19	0.832
Zinc	1383	7.80	2.866	2.433	3.733	3.293	2.407
Polluants synthétic	lues						
2,4-D	1141	2.20	0.031	0.011	0.229	0.075	0.006
2,4-MCPA	1212	0.50	0.018	0.018	0.011	0.111	0.323
Aminotriazole	1105	0.08	0.025	0.038	0.021	0.036	0.023
AMPA	1907	452.00	0.537	1.939	0.878	1.066	0.985
Biphényle	1584	3.30	0.01	0.01	0.005	0.005	0.005
Boscalid	5526	11.60	0.046	0.011	0.012	0.014	0.007

Notes explicatives :

a Les concentrations des polluants non synthétiques ne prennent pas en compte la biodisponibilité ou le fond géochimique

Paramètre	es		Co	ncentration	moyenne (µ	ıg/l)	
Nom	Code sandre	NQE	2014	2015	2016	2017	2018
Chlorprophame	1474	4.00	0.014	0.037	0.005	0.005	0.005
Chlortoluron	1136	0.10	0.065	0.016	0.008	0.025	0.174
Diflufenicanil	1814	0.01	0.022	0.013	0.008	0.015	0.01
Glyphosate	1506	28.00	0.218	0.298	0.232	0.375	0.427
Imidaclopride	1877	0.20	0.029	0.025	0.019	0.051	0.033
Métaldéhyde	1796	60.60	0.032	0.024	0.049	0.082	0.018
Métazachlore	1670	0.02	0.066	0.012	0.007	0.403	0.008
Nicosulfuron	1882	0.04	0.02	0.006	0.004	0.016	0.003
Oxadiazon	1667	0.09	0.015	0.015	0.002	0.002	0.002
Xylène	1780	1.00	0.01	0.01	d.m.	d.m.	d.m.

Les substances de l'Etat chimique

Synthèse globale des données

code station	2014	2015	2016	2017	2018
03051500	mauvais	mauvais	mauvais	mauvais	mauvais

Données détaillées

Paramètres	Paramètres			centration	moyenne	(μg/l)		Concentration maximum (μg/l)					
Nom	Code sandre	NQE MA	moy 2014	moy 2015	moy 2016	moy 2017	moy 2018	NQE CMA	max 2014	max 2015	max 2016	max 2017	max 2018
Alachlore	1101	0.3	0.015	0.015	0.001	0.001	0.001	0.7	0.015	0.015	0.001	0.001	0.001
Anthracène	1458	0.1	0.0025	0.0025	0.005	0.005	0.003	0.1	0.0025	0.0025	0.005	0.005	0.005
Atrazine	1107	0.6	0.018	0.018	0.017	0.013	0.012	2	0.026	0.03	0.045	0.025	0.016
Benzène	1114	10	0.25	0.25	0.1	0.1	0.1	50	0.25	0.25	0.1	0.1	0.1
Diphényléthers bromés	7705	s.o.	s.o.	s.o.	s.o.	s.o.	d.m.	0.14	0	0	0.0027	0	d.m.
Cadmium et ses composés	1388	0.25	0.0084	0.008	0.0067	0.005	0.0058	1.5	0.016	0.018	0.01	0.005	0.01
Tétrachlorure de carbone	1276	12	0.25	0.25	0.25	0.25	0.12	S.O.	s.o.	s.o.	s.o.	s.o.	s.o.
Chloroalcanes	1955	0.4	0.05	0.052	0.075	0.075	d.m.	1.4	0.05	0.075	0.075	0.075	d.m.
Chlorofenvinphos	1464	0.1	0.01	0.01	0.005	0.005	0.005	0.3	0.01	0.01	0.005	0.005	0.005
Chlorpyrifos (éthylchlorpyrifos)	1083	0.03	0.00025	0.00027	0.0025	0.0025	0.0025	0.1	0.00025	5e-04	0.0025	0.0025	0.0025
Pesticides cyclodiènes : aldrine, dieldrine, endrine, isodrine	5534	0.01	0	0	0	0	0	S.O.	(s.o.)	S.O.	s.o.	s.o.	s.o.
DDT total	7146	0.025	0.00023	0.00023	0	0	0	s.o.	s.o.	s.o.	s.o.	s.o.	S.O.
Para-para-DDT	1148	0.01	0.00068	0.00069	5e-04	5e-04	5e-04	s.o.	s.o.	s.o.	s.o.	s.o.	s.o.
1,2-dichloroéthane	1161	10	0.25	0.25	0.35	0.05	0.05	s.o.	s.o.	s.o.	s.o.	s.o.	s.o.

Notes explicatives :

a Les concentrations des polluants non synthétiques ne prennent pas en compte la biodisponibilité ou le fond géochimique

Paramètres			Con	centration	moyenne	(μg/l)			Cond	centration	maximur	n (μg/l)	
Nom	Code sandre	NQE MA	moy 2014	moy 2015	moy 2016	moy 2017	moy 2018	NQE CMA	max 2014	max 2015	max 2016	max 2017	max 2018
Dichlorométhane	1168	20	2.5	2.5	2.5	2.5	2.3	s.o.	s.o.	s.o.	s.o.	s.o.	s.o.
Di(2-éthyl-hexyle)-phtalate (DEHP)	6616	1.3	0.2	0.22	0.14	0.14	0.1	S.O.	s.o.	s.o.	s.o.	s.o.	s.o.
Diuron	1177	0.2	0.029	0.01	0.0056	0.0098	0.004	1.8	0.074	0.01	0.009	0.022	0.009
Endosulfan	1743	0.005	0	0	0	0	0	0.01	0	0	0	0	0
Fluoranthène	1191	0.0063	i.i.	i.i.	i.i.	i.i.	0.0061	0.12	0.084	0.048	0.13	0.047	0.027
Hexachlorobenzène	1199	s.o.	s.o.	s.o.	s.o.	s.o.	s.o.	0.05	0.0015	0.0015	5e-04	5e-04	5e-04
Hexachlorobutadiène	1652	s.o.	s.o.	s.o.	s.o.	s.o.	s.o.	0.6	0.015	0.015	0.01	0.01	0.01
Hexachlorocyclohexane	5537	0.02	i.i.	i.i.	0	0	0.00012	0.04	0.015	0	0	0	0.001
Isoproturon	1208	0.3	0.076	0.05	0.14	0.031	0.0029	1	0.69	0.14	0.92	0.14	0.012
Plomb et ses composés	1382	1.2	0.27	0.25	0.14	0.05	0.15	14	0.96	0.92	0.36	0.05	0.67
Mercure et ses composés	1387	s.o.	s.o.	s.o.	d.m.	d.m.	d.m.	0.07	0.005	0.005	d.m.	d.m.	d.m.
Naphtalène	1517	2	0.015	0.0071	0.025	0.025	0.011	130	0.035	0.022	0.025	0.025	0.025
Nickel et ses composés	1386	4	1.7	1.4	1.9	1.1	1.1	34	3.7	3.7	2.5	1.5	1.6
Nonylphénols (4- nonylphénol)	1958	0.3	0.05	0.05	(0.035)	0.01	0.01	2	0.05	(0.05)	(0.088)	0.01	0.01
Octylphénols (4-(1,1',3,3'- tétraméthylbutyl)-phénol)	1959	0.1	0.015	0.015	0.01	0.01	0.01	s.o.	s.o.)	s.o.	s.o.)	s.o.)	s.o.
Pentachlorobenzène	1888	0.007	5e-04	5e-04	5e-04	5e-04	5e-04	S.O.	s.o.	s.o.	s.o.	s.o.	s.o.
Pentachlorophénol	1235	0.4	0.03	0.03	0.01	0.01	0.01	1	0.03	0.03	0.01	0.01	0.01
Benzo(a)pyrène	1115	0.00017	0.0088	0.0084	0.0089	0.0032	0.0063	0.27	0.03	0.04	0.045	0.016	0.02
Benzo(b)fluoranthène	1116	s.o.	s.o.	s.o.	s.o.	s.o.	s.o.	0.017	0.049	0.036	0.071	0.024	0.027
Benzo(k)fluoranthène	1117	S.O.	s.o.	s.o.	s.o.	s.o.	s.o.	0.017	0.023	0.017	0.032	0.012	0.0083
Benzo(g,h,i)perylène	1118	S.O.	s.o.	s.o.	s.o.	s.o.	s.o.	0.0082	0.038	0.031	0.053	0.033	0.018
Simazine	1263	1	0.01	0.01	0.0045	0.0045	0.0032	4	0.01	0.01	0.008	0.009	0.005
Tétrachloroéthylène	1272	10	0.25	0.25	0.25	0.25	0.12	S.O.	s.o.	s.o.	s.o.	s.o.	s.o.
Trichloroéthylène	1286	10	0.25	0.25	0.25	0.25	0.12	S.O.	s.o.	s.o.	s.o.	s.o.	s.o.
Composés du tributhylétain(1) (tributhylétain-cation)	2879	2e-04	5e-05	5e-05	2.5e-05	2.5e-05	2.5e-05	0.0015	5e-05	5e-05	2.5e-05	2.5e-05	2.5e-05
Trichlorobenzène	1774	0.4	i.i.	i.i.	0	0	0	S.O.	s.o.	s.o.	s.o.	s.o.	s.o.
Trichlorométhane	1135	2.5	0.25	0.25	0.25	0.25	0.25	s.o.	S.O.	s.o.	s.o.	s.o.	s.o.
Trifluraline	1289	0.03	0.005	0.005	0.0025	0.0025	0.0025	s.o.	s.o.	s.o.	s.o.	s.o.	s.o.
Dicofol	1172	0.0013	i.i.	i.i.	i.i.	i.i.	i.i.	s.o.	s.o.	s.o.	s.o.	s.o.	s.o.
Acide perfluorooctane- sulfonique et ses dérivés (perfluoro-octane sufonate PFOS)	6561	0.00065	d.m.	d.m.	d.m.	d.m.	d.m.	36	d.m.	d.m.	d.m.	d.m.	d.m.
Quinoxyfène	2028	0.15	0.01	0.01	0.001	0.001	0.001	2.7	0.01	0.01	0.001	0.001	0.001
Aclonifène	1688	0.12	0.033	0.031	0.015	0.0075	0.0075	0.12	0.12	0.097	0.06	0.0075	0.0075
Bifénox	1119	0.012	i.i.	i.i.	0.005	0.005	0.005	0.04	0.01	0.01	0.005	0.005	0.005
Cybutrine	1935	0.0025	d.m.	d.m.	5e-04	5e-04	0.00038	0.016	d.m.	d.m.	5e-04	5e-04	5e-04

Paramètres			Concentration moyenne (µg/l)						Concentration maximum (μg/l)					
Nom	Code sandre	NQE MA	moy 2014	moy 2015	moy 2016	moy 2017	moy 2018	NQE CMA	max 2014	max 2015	max 2016	max 2017	max 2018	
Cyperméthrine	1140	8e-05	i.i.	i.i.	i.i.	i.i.	i.i.	6e-04	i.i.	i.i.	i.i.	i.i.	i.i.	
Dichlorvos	1170	6e-04	0.00015	0.00015	i.i.	i.i.	i.i.	7e-05	i.i.	i.i.	i.i.	i.i.	i.i.	
Hexabromocyclododécane (HBCDD)	7128	0.0016	d.m.	d.m.	d.m.	d.m.	d.m.	0.5	d.m.	d.m.	d.m.	d.m.	d.m.	
Heptachlore et époxyde d'heptachlore	7706	7e-07	i.i.	i.i.	i.i.	i.i.	i.i.	3e-04	i.i.	i.i.	i.i.	i.i.	i.i.	
Terbutryne	1269	0.065	0.01	0.01	0.0021	0.0031	0.001	0.34	0.01	0.01	0.006	0.018	0.001	

Présentation des informations contenues dans cette fiche

Cette fiche présente les données écologiques, physico-chimique et chimique de la station. Les données proviennent du site Naiade (http://www.naiades.eaufrance.fr/), site officiel de référence des données qualité de l'eau.

Pour bien comprendre les données ci-après, quelques explications sommaires sont présentées ici, et peuvent être utilement complétées par nos autres rubriques internet.

L'hydrobiologie

L'hydrobiologie est une partie de l'écologie qui consiste à étudier l'écosystème "milieu aquatique". Elle s'intéresse donc aux organismes vivant dans l'eau et à leurs interactions avec leur milieu de vie. Plusieurs organismes vivants sont étudiés : les invertébrés, les diatomées, les macrophytes, et les poissons.

La physico-chimie

Les phénomènes de pollution se traduisent généralement par des modifications des caractéristiques physico-chimiques du milieu récepteur. Selon la directive cadre sur l'eau (2000/60/CE), l'évaluation de l'état physico-chimique des eaux de surface se fait par l'analyse des paramètres tels que les nutriments, le bilan oxygène, le PH, la température, l'acidification, et la salinité.

La chimie et les polluants spécifiques de l'état écologique

Certains polluants chimiques peuvent entraîner une contamination des eaux superficielles et souterraines et avoir des effets néfastes à plus ou moins long terme, que ce soit via des altérations temporaires des fonctions biologiques allant jusqu'à la mort des individus, sans oublier les effets pouvant perturber les dynamiques de populations. C'est pourquoi, il existe une liste de polluants à surveiller au niveau national, dont les concentrations ne doivent pas dépasser certains seuils de sécurité. De même, pour chaque bassin, une liste de polluants spécifiques sont aussi analysés.

Le bon état

Le rassemblement de ces données permet de conclure au bon état d'une masse d'eau. Pour qu'une masse d'eau superficielle soit en bon état, il faut être en bon état écologique (hydrobiologie et physico-chimie), et chimique.

Le **schéma** suivant¹⁹ indique les **rôles respectifs des éléments de qualité** biologiques, physicochimiques et hydromorphologiques **dans la classification de l'état écologique**, conformément aux termes de la DCE (définitions normatives de l'annexe V.1.2).

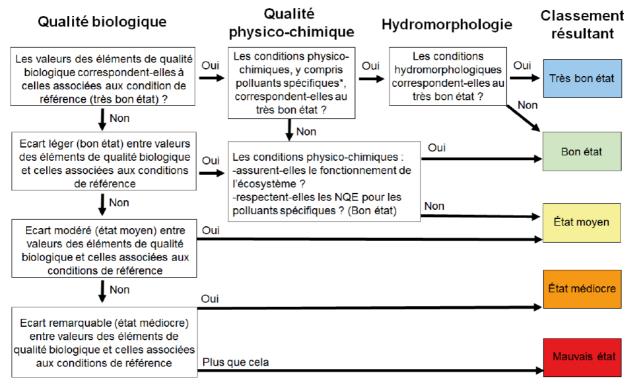


Diagramme de priorisation du bon état écologique

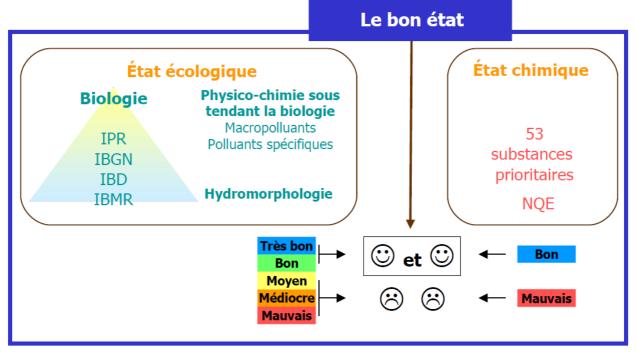


figure 3: Définition du bon état (source : DRIEE)

Pour la bonne compréhension des données

Toutes les données non quantifiées car trop minimes pour être observées, ont une valeur dite "limite de quantification" qui leur est attribuée. Les limites de quantifications des substances peuvent évoluer, modifiant de ce fait les concentrations moyennes d'une année à l'autre.

Tous les indicateurs calculés sont systématiquement comparés à une valeur de référence. S'il n'y a pas de référence, alors la donnée est dite "sans objet". Les données dites "comme insuffisantes" sont des données ayant un doute sur le fait d'être en dessous ou au-dessus de la référence.

Pour la bonne compréhension des données, tous les tableaux présentés ci-après respectent le même code couleur de l'état du milieu. Le bon état est signalé par une couleur verte ou bleue. L'état le moins bon est celui qualifié de "mauvais" en rouge.

	Légende
Etoile	Classement
*	Très bon
*	Bon
*	Moyen
*	Médiocre
	Mauvais
*	i.i Information insuffisante
*	s.o Sans objet
*	d.m Donnée manquante

Enfin, pour permettre la comparaison annuelle des données, la même méthode a été utilisée partout. La méthode retenue est la plus récente. Autrement dit, les données présentées sont les mêmes qu'il y a quelques années, mais leurs anaylses ou les indices calculés pourraient être différents de ceux présentés il y a quelques années.